
Data-driven Optimization for 
Zero-delay Lossy Source 

Coding with Side Information

Elad Domanovitz, University of Toronto

Joint work with 

Daniel Severo, Ashish Khisti and Wei Yu

University of Toronto

ICASSP 2022



Motivation 

• Wireless sensor networks 
• Reduce rate (= reduce power consumption)

• Delay sensitive applications
• Anomaly detection

• Can correlation be used to reduce rate?
• Yes, if side-information (SI) is known at the 

encoder

• Can correlation be used to reduce rate if 
SI is not known at the encoder?
• Yes!

• Lossless – Slepian, Wolf ‘73

• Lossy – Wyner, Ziv ‘76

• Delay ?
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Wyner-Ziv Coding

• Decoder has access to a side information sequence

• Rate-Distortion function was characterized by Wyner and Ziv (1976)

• Gaussian Sources: 𝑅 𝐷 =
1

2
log

𝜎𝑋|𝑌
2

𝐷

• Same rate-distortion function when the side information is known to both the encoder 
and decoder!

• Drawbacks
• Asymptotic i.i.d. setting

• Joint distribution known

• Random Coding, infinite block length -> infinite delay 

source
Encoder Decoder

Reconstructionbit-stream
011000 …
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Δ

Uniform Scalar Quantizer:
k = min

𝑘
|𝑥 − 𝑘Δ|

0 1 0 0 0 0 01 1 1 1 1

1 1 1 1 1 1

Transmitted index:
𝑅 = log2 𝐽

Encoding:

Decoding:

JΔ

0 1 2 4 6 103 5 7 9 118

𝑋

𝐸[𝑋|𝑌 = 𝑦]

𝑋= argmin
k:Φ𝑘,𝐽=𝑗

|| 𝑘Δ − 𝐸[𝑋|𝑌 = 𝑦]||

Quantization 1-D Binning

𝐽k

Binning (J=2):
j = mod(𝑘, 𝐽)

Zero delay (Scalar) Wyner-Ziv Coding
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• Zamir, Erez, Shamai TIT’02



Zero delay (Scalar) Wyner-Ziv Coding

• Encoding:
• Uniform Scalar Quantization 𝑄:ℝ ⟶ ℤ, k = min

𝑘
|𝑥 − 𝑘Δ|

• Reconstruction Points: 𝑘 → 𝑥𝑘
• Binning (one dimensional modulo): Φ𝑘,𝐽 = 𝑘 mod J ∈ 0,1,… , 𝐽 − 1

• 𝑅 = log2 𝐽

• Decoding:
• Given Φ𝑘,𝐽= 𝑗 and 𝑌 = 𝑦, decode 𝑥𝑘:

𝜓 𝑗, E[X|Y=y] = 𝑥𝑘 = argmin
k:Φ𝑘,𝐽=𝑗

|| 𝑘Δ − 𝐸[𝑋|𝑌 = 𝑦]||

• Distortion: 𝐷 = 𝐸 𝑋 − ෨𝑋𝑘
2

composed  of

• 𝐷𝑔 =Granular distortion: fine quantizer granularity

• 𝐷𝑜 =“Overload” distortion: distortion resulting from deciding on wrong index
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• Chen, Tuncel T-SP‘11:
• X and Y jointly (memoryless) Gaussian with correlation 𝜌

• Tradeoff in quantization interval 

• Assuming periodic quantizer:

Δ =
𝛽

𝐽
1 − 𝜌2, 𝐷 = 4𝜎𝑥

2 1 − 𝜌2
𝛽

𝐽

2
2−2𝑅

12
+ 1 − erf

𝛽

12𝐽

Zero delay (Scalar) Wyner-Ziv Coding: Analysis

Dense quantizer= 𝐷𝑔 ↓, 𝐷𝑜 ↑
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Sparse quantizer= 𝐷𝑔 ↑, 𝐷𝑜 ↓

Δ Δ



Zero delay (Scalar) Wyner-Ziv Coding:  Analysis

• Chen, Tuncel T-SP‘11:
• 𝑋 and 𝑌 jointly (memoryless) 

Gaussian with correlation 𝜌

• Optimized Δ: 10 𝑑𝐵 gap in SQNR 
from ideal Wyner-Ziv limit

• No closed-form solution for 
optimal 𝛽
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WZ Coding: Sources with Memory

• Chen, Tuncel T-SP’11:
• DPCM with 

• Prediction Filter (Feedback): 𝐴 𝑧

• Reconstruction Filter: A−1 𝑧

• SI Filter: 𝐵 𝑧 = 1 + 𝑏𝑧−1

• Exhaustive search over filter 
coefficients 

• Only considers Gaussian AR(1) 
processes

• 10 dB SQNR gap with respect to 
ideal Wyner-Ziv limit
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Prediction Filter
Side Information Filter

Reconstruction
Filter



Model vs Data Driven Approach

Model Driven Approach Data Driven Approach

Requires Joint Distribution Training samples

Method of optimization
Exhaustive search of filter 
coefficients

Stochastic gradient descent

Complexity Scales exponentially with memory Does not scale exponentially

Implemented Only for Gaussian AR(1) processes 
Easily implemented for sources 
with larger memory
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• Prior art:
• Fleming, Zhao, Effros T-IT‘04
• Saxena, Rose T-SP‘09

• Data-Driven approaches based on alternating optimization algorithms

• Each block is updated when other are held fixed 
• Coordination
• Complexity
• Results presented only for AR(1) processes



Proposed Architecture: Filter Choice

• Prediction filter feedforward: 𝐴 𝑧 ≡ [𝑎0, … , 𝑎𝐿1]

• Reconstruction filter: C 𝑧 ≡ [𝑐0, … , 𝑐𝐿3]

• Side-Information filter: 𝐵 𝑧 ≡ [𝑏0, … , 𝑏𝐿2]
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Prediction Filter

Side-Information Filter

Reconstruction  Filter



Proposed Architecture: Decoding Function

• Given Φ(෩𝑈 𝑛 )= j and 𝑉 𝑛 = 𝑣, decode 𝑢𝑘 as

• u𝑘 = min
k:Φ𝑘,J= 𝑗

|| 𝑘Δ − 𝑣||

• Assuming 𝐸 𝑢 𝑛 𝑌[𝑛] ≈ 𝑣 is justified as the filters during training 

should enforce it
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Training Architecture: Quantization
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• 𝑄 𝑈 𝑛 is non differentiable

• During training replace with:

෩𝑈 𝑛 = 𝑈 𝑛 + 𝑁 𝑛 ,𝑁 𝑛 = 𝒩 0,
Δ2

3
2−2𝑅

• Similar approaches are commonly used in learned image compression:
• Balle, Minnen, Singh, Hwang, Johnston ICLR’18

• Zhang, Qian, Chen, Khisti NeurIPS’21



Training Architecture: Modulo Function
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• Desired modulo function: Maps ෩𝑈 𝑛 to 𝑈 𝑛 = 𝑚𝑜𝑑 ෩𝑈 𝑛 +
𝐽Δ

2
, 𝐽Δ −

𝐽Δ

2
• Non differentiable

• Differentiation with respect to the modulo size not always implemented

• Replace with: 

𝑀 𝑥, 𝛼 ≈
𝛼

𝜋
tan−1 tan 𝜋

𝑥

𝛼
−
1

2



Training Architecture: SoftMin Decoder
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• 𝑈 𝑛 = min
𝑗

|| 𝑈 𝑛 + 𝑗𝐽Δ − 𝑣|| is non differentiable

• Replace by a “soft-min function”

ෘ𝜓 𝑗, 𝑣,𝐾 = σ
𝑘=

𝐾

2

𝐾

2 𝑘
𝑒−𝑇𝑤𝑘

σ𝑗 𝑒
−𝑇𝑤𝑗

, 𝑤𝑘= 𝑈 𝑛 − 𝑘𝐽Δ − 𝑣
2

• T=Temperature 



Training Algorithm: SGD

• Loss Function: ℒ 𝑎, 𝑏, 𝑐, Δ, R = 𝔼𝑒𝑚𝑝 𝑋 𝑛 − 𝑋 𝑛
2

• Algorithm  (SGD)
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Experimental Results - 1

• First order Gauss Markov (GM) processes (Chen, Tuncel TSP‘10)
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Experimental Results - 2

• Source: First order GM

• Side Information: Second order GM 
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Experimental Results - 3

• Source: Third order GM

• Side Information: Second order GM
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Conclusions and Next Steps

• Data driven approach for zero-delay lossy source coding with side 

information

• Exampled convergence for high-order Gauss Markov Processes

• Updates all blocks simultaneously 

• Consistently observed approximately 10dB loss in performance 

compared to ideal Wyner-Ziv

• Other (general) processes?

• Sensitivity to starting conditions?
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